Capping protein-controlled actin polymerization shapes lipid membranes
نویسندگان
چکیده
منابع مشابه
Effect of capping protein on the kinetics of actin polymerization.
Acanthamoeba capping protein increased the rate of actin polymerization from monomers with and without calcium. In the absence of calcium, capping protein also increased the critical concentration for polymerization. Various models were evaluated for their ability to predict the effect of capping protein on kinetic curves for actin polymerization under conditions where the critical concentratio...
متن کاملDynamics of membranes driven by actin polymerization.
A motile cell, when stimulated, shows a dramatic increase in the activity of its membrane, manifested by the appearance of dynamic membrane structures such as lamellipodia, filopodia, and membrane ruffles. The external stimulus turns on membrane bound activators, like Cdc42 and PIP2, which cause increased branching and polymerization of the actin cytoskeleton in their vicinity leading to a loca...
متن کاملMammalian CARMIL inhibits actin filament capping by capping protein.
Actin polymerization in cells occurs via filament elongation at the barbed end. Proteins that cap the barbed end terminate this elongation. Heterodimeric capping protein (CP) is an abundant and ubiquitous protein that caps the barbed end. We find that the mouse homolog of the adaptor protein CARMIL (mCARMIL) binds CP with high affinity and decreases its affinity for the barbed end. Addition of ...
متن کاملCapping protein binding to actin in yeast
The mechanism by which capping protein (CP) binds barbed ends of actin filaments is not understood, and the physiological significance of CP binding to actin is not defined. The CP crystal structure suggests that the COOH-terminal regions of the CP alpha and beta subunits bind to the barbed end. Using purified recombinant mutant yeast CP, we tested this model. CP lacking both COOH-terminal regi...
متن کاملProbing polymerization forces by using actin-propelled lipid vesicles.
Actin polymerization provides a powerful propulsion force for numerous types of cell motility. Although tremendous progress has been made in identifying the biochemical components necessary for actin-based motility, the precise biophysical mechanisms of force generation remain unclear. To probe the polymerization forces quantitatively, we introduce an experimental system in which lipid vesicles...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2018
ISSN: 2041-1723
DOI: 10.1038/s41467-018-03918-1